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Pronounced effects of the interdot Coulomb repulsion on the tunnel current/gate voltage dependence at the
ambient conditions are predicted for the double quantum dot system in the serial configuration immersed in the
electrolyte solution in the case of the weak tunneling of electrons both between the dots and between the dots
and leads. Electrons at the dots are coupled strongly to the classical phonon modes and Debye screening of the
electric field is taken into account. The infinite intradot Coulomb repulsion limit is used. The effects consist of
�i� a very large width of the maximum of the tunnel current/gate voltage dependence �of the order of
−kBT ln�k0 /k�, where k0 and k are the characteristic rates of the electron tunneling between the dots and
between the dots and leads, respectively� in the limit k0 /k→0, �ii� the dependence of the positions of the
maxima of the current/gate voltage curve and their widths on the sign of the difference of the electron energy
levels � of the quantum dots and the energy of the polaron shift, and �iii� narrow-width Coulomb blockade
peaks in the tunnel current/gate voltage curve for k0�k. The dependence of the differential conductance on the
gate voltage, the energy of the interdot Coulomb repulsion, the Debye screening length, and values of k0 /k and
� are studied. It is shown that the curves of the differential conductance/bias voltage dependence can be very
different for different values of these parameters. These parameters also determine the position of the regions
of the negative differential conductance which exist in the general case.
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I. INTRODUCTION

Recent advances in molecular electronics including the
experimental realization of a molecular diode1 are related
with the successes in the investigation of the quantum dots.
Particular attention was paid to the electron correlation ef-
fects which play an important role in the electron tunneling
through quantum dot systems. These effects are rather well
understood for arbitrary temperatures T �both for T�TK and
T�TK, where TK is the Kondo temperature� both for the
parallel and serial configurations in the case when the
electron-phonon coupling is absent �see, e.g., Refs. 2–13,
and references therein�. In particular, for T�TK, the intradot
Coulomb repulsion Uii, i=1,2, leads to the Coulomb block-
ade peaks in the differential conductance and in the tunnel
current/gate voltage dependence. The account of the interdot
Coulomb repulsion U12 in the case of the serial arrangement
of the quantum dots destroys the symmetry between these
peaks and can shift the position and change amplitudes of
some peaks.4,5,8

Phonon-assisted tunneling in the double quantum dot sys-
tem was considered only at low temperatures with neglect of
the electron correlation effects �see, e.g., Ref. 14, and refer-
ences therein� or at the room temperatures for the infinite
intradot Coulomb repulsion and with neglect of the interdot
one in the totally weak tunneling limit15 �i.e., weak tunneling
of electrons both between the dots and between the dots and
leads�. The effect of the intradot Coulomb repulsion on the
tunnel current through a one-level quantum dot in the weak
tunneling limit, in the case of the strong coupling of the
electrons at the dot with the classical phonon modes, was
considered in Ref. 16. One may suppose that, for T�TK, the
results of Refs. 2–13 together with those of Refs. 15 and 16

give a rather good insight into the effect of the finite intradot
Coulomb repulsion on the tunnel current through the double
quantum dots also in the case of the strong electron-phonon
coupling. However, the interdot Coulomb repulsion U12 can
be large enough in the case of the strongly localized elec-
trons on the dots. Therefore, the effect of the interdot Cou-
lomb repulsion on the tunnel current in the case of the strong
electron-phonon interaction has to be studied. This problem
can be investigated in detail within the totally weak tunnel-
ing limit when the rate equation method can be used.

In this paper we present the results of the study of the
effect of the interdot Coulomb repulsion on the tunnel cur-
rent through the double quantum dot system in the totally
weak tunneling limit in the case of the strong electron-
phonon coupling. In many cases Uii is much larger than all
other characteristic energies of the system so that the infinite
intradot repulsion limit can be used. The double quantum dot
system is immersed into the electrolyte solution. It permits to
rule the tunnel current using two independent parameters: the
bias voltage V as the source-drain voltage and the overvolt-
age � �the electrode potential vs a reference electrode in-
serted in the electrolyte solution� as the gate voltage. It also
permits to study the effect of Debye screening of the electric
field on the heights, positions, and widths of the peaks of the
tunnel current/gate voltage dependence and on the differen-
tial conductance.

The structure of this paper is as follows. In Sec. II we
describe the model and write the rate equations. A number of
pronounced effects of the interdot Coulomb repulsion on the
tunnel current/gate voltage dependence for different values
of the other parameters of the system is predicted and studied
in Sec. III. Section IV is devoted to the analysis of the dif-
ferential conductance/bias voltage curves which are charac-
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teristically different in the different regions of the parameter
space. We summarize and conclude in Sec. V.

II. MODEL AND RATE EQUATIONS

The total system is described by the two-impurity Ander-
son Hamiltonian �where, however, the intradot Coulomb re-
pulsion energies are very large� complemented by the term
which takes into account the interdot Coulomb repulsion en-
ergy U12 between electrons having arbitrary spin projections.
In addition, an electron at each dot interacts linearly with a
classical phonon subsystem considered at room temperatures
�kBT=0.025 eV, where kB is the Boltzmann constant�. This
phonon subsystem can represent slow vibrational modes of
the solvent placed between the leads or classical intradot
vibrational modes. Debye screening of the electrostatic po-
tential in the electrolyte solution is also taken into account.

Let �10 and �20 be the energies of the spin-degenerate
levels of the left and right dots, respectively, counted from
the Fermi level of the left lead in the case when the electron-
phonon coupling, interdot Coulomb interaction, and the ex-
ternal electric field are absent. Let �i be the same energies in
the case when the interaction of electrons with the external
electric fields is taken into account. Let t be the tunneling
matrix element between the dots and, �L and �R, the widths
of the electron levels of the first and second dots arising due
to the tunneling of electrons between a lead and the nearest
dot. The bias voltage V is defined in such a manner that eV
equals the difference of the electrochemical potentials of the
left and right leads. We consider below the totally weak tun-
neling limit when �L, �R, �t�, and kBTK	kBT	
 �or, more
precisely,17 �L,�R	 �kBT
�1/2� so that the rate equation
method can be used.2,3,18 Here 
 is the polaron shift of each
valence electron level due to the electron-phonon interaction.
In the totally weak tunneling limit the tunneling is of sequen-
tial character with intermediate electron localization at the
valence orbitals of the quantum dots after appropriate fluc-
tuation of the phonon subsystem and its full relaxation so
that the double quantum dot system can be characterized by
a number of states �n1 ,n2� and their probabilities P�n1 ,n2�.
Here ni is the number of electrons at the ith dot �ni=0 or 1 in
the infinite intradot Coulomb repulsion limit�. As in the case
of the parallel configuration,2,3 the probabilities P�n1 ,n2�
cannot be factorized as the products of the occupancy prob-
abilities P��n1�� and P�n2� for the corresponding single-
electron levels. This is due to both the interdot Coulomb
repulsion and the electron tunneling process. Only if U12
=0 and t=0 or U12=0 and V=0, this factorization takes
place. The effect of absence of the factorization even for
U12=0 in the case V�0, t�0 may be called the kinetic
interdot correlation.

The probabilities P�n1 ,n2� obey the kinetic equations

dP�0,0�
dt

= − 2kL1�0,0�P�0,0� − 2kR2�0,0�P�0,0�

+ k1L�1,0�P�1,0� + k2R�0,1�P�0,1� , �1�

dP�1,0�
dt

= − k1L�1,0�P�1,0� − k12�1,0�P�1,0�

− 2kR2�1,0�P�1,0� + k21�0,1�P�0,1�

+ 2kL1�0,0�P�0,0� + k2R�1,1�P�1,1� , �2�

dP�0,1�
dt

= − k2R�0,1�P�0,1� − k21�0,1�P�0,1�

− 2kL1�0,1�P�0,1� + k12�1,0�P�1,0�

+ 2kR2�0,0�P�0,0� + k1L�1,1�P�1,1� , �3�

and P�1,1�=1− P�0,0�− P�1,0�− P�0,1�. The rate constants
k���n1 ,n2�, �, �=L, R, 1, and 2 describe the probabilities of
electron transfer to �or from� the valence level of a given
quantum dot from �or to� the corresponding lead ��=L,R;
�=1,2 �or �=1,2; �=L,R�� or between the dots ��, �=1,2
or 2,1�, where �n1 ,n2� denotes the state of the double quan-
tum dot system prior electron transition. Factors 2 on the
right-hand side �rhs� of Eqs. �1�–�3� are due to two possible
spin projections of electrons in the leads. The subsequent
discussion is limited to the symmetric contact, i.e., the leads
are assumed to be made of the same metal and z2=L−z1,
where L is the distance between the leads and zi is the posi-
tion of the ith quantum dot so that the polaron shift is the
same for both valence levels.

As in Ref. 16, the rate constants k���n1 ,n2� calculated up
to the second order in the corresponding tunneling matrix
element in the high-temperature limit for phonons have the
form

k���n1,n2� = k� d�

2kBT
f����exp�− �
 − �F���n1,n2�

− � + �F
��2/4
kBT� , �4�

k���n1�,n2�� = k���n1,n2�exp�− �F���n1,n2�/kBT� , �5�

where �=L, �=1, n11=n1+1, n21=n2 or �=R, �=2, n12
=n1, n22=n2+1. Here f���� are the Fermi functions of the
left and right leads having the Fermi energies �F

�, the factor k
is proportional to �L�=�R� and the detailed balance principle
was used in obtaining Eq. �5�. �F1L�0,0�=e�
�+�1V�
−kBT ln�2�,19 �F1L�0,1�=�F1L�0,0�−U12, �F2R�0,0�
=e
�+e��2−1�V+�10−�20−kBT ln�2�, �F2R�1,0�
=�F2R�0,0�−U12, �=�0−� is the gate voltage, � is the po-
tential of the left lead, and �0 is the equilibrium potential of
the left lead for the process of transfer of the electron, i.e.,
when �=�0 and V=0, the process of the transfer of the elec-
tron to or from the first dot is in equilibrium at the left lead
so that 2kL1�0,0�=k1L�1,0�, 
 and �1, �2 quantify the effect
of the gate voltage and bias voltage on the position of the
electron energy levels of the dots �see Ref. 19� so that, for
empty levels, �1=
−e
1�−e�1V+kBT ln�2�, �2=
−e
2�
−e�2V−�+kBT ln�2�, where 
1=
2=
=1−�1−�2 for the
symmetric contact and �=�10−�20 is the asymmetry of the
energy levels. Expressions for �1 and �2 are presented in
Ref. 19. It should be noted that �2��1, 0��i�1, and �i
depends on zi /L and LD /L, where LD is the Debye length.
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For example, �i	0 and �i	zi /L for the cases of the full
screening and weak screening, respectively.

k12�1,0� = k0 exp
−
�
12 − ��2

4
12kBT
� , �6�

k21�0,1� = k12�1,0�exp
−
�

kBT
� . �7�

Here the factor k0 is proportional to �t�2, 
12=2
 in the case
when different phonon modes are coupled with electrons of
the first and second quantum dots and �=�1−�2=�+ ��2
−�1�eV. Since �1��2 in the general case, ��0 even if �
=0.

It is worthwhile to discuss shortly the characteristic time
scales of the classical phonon subsystem in connection with
the problem of the polaron formation on the time scale �e
=� /�L of the electron tunneling events and the condition of
the applicability of the weak tunneling limit �Eq. �4�� in the
case under consideration. In addition to the usual time scale
�ph=1 /�av��e, where �av is the average frequency of the
classical phonon modes, the second time scale �cl appears
due to the electron-phonon coupling and the condition
kBT /��av�1. If one considers the phonon correlation func-
tion Uph��� �see, e.g., p. 301 and Eq. �4.3.20� of Ref. 20� and
expends the argument of the corresponding exponential func-
tion in series in ��av�	1 and �kBT /��av�−1	1, one obtains
that the phonon correlation function is proportional to
exp�−kBT
�2 /�2�. Therefore, the classical phonon subsystem
has an additional time scale �cl=� / �kBT
�1/2 which charac-
terizes the relaxation of this subsystem in the time interval
between 0 and �ph=1 /�av. Since �cl	�e	�ph �or �L
	 �kBT
�1/2�, the local polaron is formed on the time scale of
the consequent tunneling events.

Another view on this problem is as follows. It can be
shown that k��L / �kBT
�1/2. From the point of view of the
Landau-Zener theory,21 the parameter k is proportional to the
Landau-Zener parameter, which, in its turn, is proportional to
the ratio of �nuclear and �e where �nuclear=�cl in the case under
consideration. The weak tunneling limit implies that the
Landau-Zener parameter is much smaller than 1 so that
�nuclear=�cl	�e. The same condition �L	 �kBT
�1/2 as the
condition of the applicability of the weak tunneling limit was
obtained in Ref. 17 as the condition opposite to that for the
strong tunneling limit.

Calculations in the present paper are performed for values
of k0 /k which lie within the range from 0.001 �the small k0 /k
limit or k0 /k	0� to 100 �the infinite k0 /k limit or k0 /k→��.
It can be shown that the ratio k0 /k is proportional to
�t�2 / ��LkBT�. The weak tunneling limit for the electron tun-
neling between dots takes place when �t�	kBT because one
can neglect the effect of the splitting of the electron terms on
the rate constant in this case. The smallest value of �L,
which is used in the literature �see, e.g., Ref. 4�, has an order
of 10−6 eV. Since �L should be much smaller than �
kBT�1/2

in the weak tunneling limit, one can consider �L=0.01 eV
as an upper limit for �L in the case when 
=5kBT. There-
fore, it is sufficient to take �L=0.01 eV and �t�
=0.0005 eV=0.02kBT in order to obtain k0 /k�0.001 �the

small k0 /k limit�. On the other hand, it is sufficient to take
�L=10−6 eV and �t�=0.0016 eV=0.06kBT in order to obtain
k0 /k�100 �the infinite k0 /k limit�.

The steady-state tunnel current has the form

j = e�k12�1,0�P�1,0� − k21�0,1�P�0,1�� , �8�

where P�1,0� and P�0,1� are the steady-state solutions of
rate Eqs. �1�–�3�. These solutions are presented in the Appen-
dix. Since P�1,0� and P�0,1� are lower than 1, it follows
from Eqs. �6�–�8� that, with the exception of the case LD /L
→0, the tunnel current through the double quantum dot sys-
tem tends to zero when �V�→�. It leads to the appearance of
two regions of the negative differential conductance which
have a nature another than that considered in Ref. 7 and
similar to that considered in Refs. 11 and 12.

III. ELECTRON CORRELATION EFFECTS IN THE
CURRENT/GATE VOLTAGE DEPENDENCE

We address first the small k0 /k limit when the effect of the
interdot Coulomb repulsion is most pronounced. We present
the expressions for P�1,0� and P�0,1� in the limit k0 /k→0
for two opposite cases

P�1,0� =
exp��eV − ��/2k

B
T�

2
ch
 eV − �

2k
B
T
� + ch
 e
�V − 2�� − �

2k
B
T

��
�9�

for U12=0 and

P�1,0� =
exp��eV − ��/2k

B
T�

2ch
 eV − �

2k
B
T
� + exp
 e
�V − 2�� − �

2k
B
T

�
�10�

for U12→�. In both cases

P�0,1� = P�1,0�exp
−
eV − �

kBT
� . �11�

Equations �10� and �11� are obtained using Eqs. �5�, �A7�,
�A8�, and �A17�.

It follows from Eqs. �8�, �9�, and �11� that, for k0 /k→0
and U12=0, the probabilities P�1,0�, P�0,1� and the tunnel
current

j =
ek

0
exp�− �

2/4

12

k
B
T�exp�− 


12
/4k

B
T�sh�eV/2k

B
T�

2ch� �e
� + e�
1
V�

2k
B
T �ch� �e
� + e��

2
− 1�V + ��

2k
B
T �

�12�

tend to zero when �→�. This is due to the fact that
P�1,1�→1 in this limit so that the tunnel current cannot
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flow. As a result, the dependences of P�1,0�, P�0,1�, and j
on � have volcano-type shapes and take their maximum val-
ues at

�max = V/2 − �/2e
 . �13�

As is shown in the Appendix, Eq. �13� is valid for arbitrary
values of k0 /k. The tunnel current given by Eq. �12� satisfies
the identity j�V ,� ,��=−j�−V ,−� ,−�� for all values of 
.
For arbitrary k0 /k, this identity takes place only in the large

 limit �see Eq. �A11��.

The width W at half maximum of the current/gate voltage
curve for k0 /k→0 has the form

e
W = 2kBT ln
2 + ch� eV − �

2kBT
�

+ 

2 + ch� eV − �

2kBT
��2

− 1�1/2� �14�

and increases monotonously from 	4kBT ln�1+21/2� /e
 for
�eV−��	2kBT to 	�eV−�� /e
 for �eV−���2kBT. A value
of j��max� is proportional to 1 /ch2��eV−�� /4kBT� and de-
creases with the increase in � in the regions ��eV or �
�eV even in the case when �	 �4
12kBT�1/2 so that the
larger the distance between the levels �i, the smaller j��max�.

In contrast to the case when U12=0, it follows from Eqs.
�8�, �10�, and �11� that the probabilities P�1,0�, P�0,1� and
the normalized value of the tunnel current

j/ek
0

exp�− 

12

/4k
B
T�

=
2 exp�− �

2/4

12

k
B
T�sh�eV/2k

B
T�

2ch
�eV − ��

2k
B
T
� + exp
�e
�V − 2�� − ��

2k
B
T

�
�15�

are finite in the limit �→� for U12→� and k0 /k	0. We
have P�1,1��0, P�0,0�→0, and P�1,0�+ P�0,1�=1 in this
case, that is, a manifestation of the strong Coulomb block-
ade. This results not only in the identity P�1,1��0 but also
in the abrupt increase in P�1,0� with the increase in � at V
�0, eV�kBT �see curve 1 in Fig. 1� �for the sake of sim-
plicity, we consider in this figure the fully symmetric case
��10=�20� and moderate Debye screening �LD /L=0.3��. The
reason of such behavior is as follows. At V�0 and �=0
electron jumps to the dot 1 from the left lead. But it cannot
jump easily to the dot 2 because k0 /k	0. When � increases,
P�0,0� tends to zero so that P�1,0� should increase because
P�0,1�	 P�1,0� for eV�kBT �see Eq. �11� and curves 1 and
3 in Fig. 1�. If U12 is large but finite, P�1,1� also starts to
increase at rather large values of � which results in the de-
crease in P�1,0� �see dashed line in Fig. 1�. If U12 is still
infinitely large but the ratio k0 /k increases, the electron can
jump more easily from the dot 1 to the dot 2. As a result,
P�1,0� decreases with the increase in � after passing its
maximum value while P�0,1� begins to increase and be-
comes larger than P�1,0� �see curves 2 and 4 in Fig. 1�.

The dependence of P�0,1� on � at U12→� discussed
above results in the gate voltage dependence of the normal-
ized tunnel current. Using the large 
 limit in the case when
k0 /k	0 it can be shown that the tunnel current takes its
maximum value at e
�max,�	−2kBT ln�k0 /k� /3 and is al-
most independent of k0 /k for ���max,� �see Eqs.
�A19�–�A21��. Using Eqs. �4� and �8� in the opposite limit
when e
��
 it can be shown that a width at half maximum
W of the current/gate voltage curve equals approximately
−kBT ln�k0 /k� for �=0 �see Eq. �A34��. These effects are
demonstrated in Fig. 2 where the current/gate voltage depen-
dences at U12→� �solid lines� and U12=15kBT �dashed line�
for different values of k0 /k are presented. It follows from
Fig. 2 that j��� curves have very large width W at small
values of k0 /k �we note that 
	0.36 for z1 /L=0.15, LD /L

FIG. 1. The dependencies of the probabilities P�1,0� and
P�0,1� on the gate voltage for V=4kBT, 
=5kBT, 
12=2
, z1 /L
=1−z2 /L=0.15, LD /L=0.3, �=0. Solid lines: U12→�. 1. P�1,0�
for k0 /k=0; 2. P�1,0� for k0 /k=0.01; 3. P�0,1� for k0 /k=0; and 4.
P�0,1� for k0 /k=0.01. The dashed line: P�1,0� for U12=10kBT,
k0 /k=0.

FIG. 2. Dependence of the tunnel current on the gate voltage.
The current j is normalized to ek0 exp�−
12 /4kBT�. The parameters
are the same as in Fig. 1. Solid lines: U12→�. 1. k0 /k	0; 2.
k0 /k=0.001; 3. k0 /k=0.01; and 4. k0 /k=0.1. The dashed line: U12

=15kBT, k0 /k=0.01.
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=0.3�. Figure 2 also shows that at finite U12 the j��� curve
has the second �Coulomb blockade� peak. However, it over-
laps strongly with the first peak for the values of U12 which
generate this peak in the experimentally studied region of �
���1V or e
��14.3kBT�. For U12�9kBT both peaks of the
j��� curve merge to one.

A consequence of the strong Coulomb blockade in the
small k0 /k and large U12 limits is also the dependence of
�max,� and W on the energy 
 of the polaron shift. This
dependence has the same physical nature as the dependence
of �max,� and W on k0 /k since the ratio k0 /k enters actually
all expressions through the parameter a given by Eq. �A12�.
The larger the 
, the smaller the rate constants k12�1,0� and
k21�0,1�. As a result, the energy e
�max,� is shifted by 
 /6
�see Eq. �A21�� and width increases as 
 /2 �see Eqs. �A29�
and �A34��. Figure 3 demonstrates the dependence of �max,�
and W on 
 for �=0 and two values of V. Figure 3 also
shows that, for small LD=0.01 ��i	0 in this case�, a value of
�max,� varies as V /3 but not as V /2 as for U12=0.

When the ratio k0 /k increases and becomes larger than
unity, the width W decreases and the position �max,� of the
maximum of the current/gate voltage dependences for U12
→� tends to a value which for �=0 coincides approximately
with �max for U12=0 �see Fig. 4 and Eq. �A37��. The position
of the left maximum, �max,1, of the j��� curve for finite val-
ues of U12 also tends to the same value �max. When values of
U12 and k0 /k are large enough, the first and second peaks of
the current/gate voltage dependence becomes so narrow that
the overlap between them is almost absent. In this case the
behavior of the j��� curve near the second maximum is de-
scribed approximately by the same equation as for U12→�
in which the energy e
� is shifted by −U12. As a result, the
general shape of the j��� curves for finite U12 and k0�k is
similar to that obtained for the one-level quantum dot16 for
finite values of the intradot Coulomb repulsion �see Fig. 1 of
Ref. 16�. Namely, the j��� curves for finite U12 in the region
of the left maximum almost coincide with that for U12→�,
the j��� curves demonstrate the second clear-cut Coulomb

blockade peak which position tends to �max,2=�max+U12 /

when k0 /k→� and �=0 �see Eq. �A41��, the height of the
second peak is approximately the same as that of the first
peak, the first and second peaks of the j��� curves merge at
U12�U12�, where U12� is the critical value which, in particu-
lar, equals 	4kBT for k0 /k=1. It should be noted that the
critical values U12� as well as the heights of peaks and their
positions depend on the parameters V, 
, zi /L, LD /L, and �.
For the set of these parameters used for the calculation of the
current/gate voltage dependences presented in Figs. 2 and 4
U12�	kBT�4−ln�k0 /k�� for k0 /k�1. It should be also noted
that, in totally weak tunneling limit, the bonding and anti-
bonding states of the interacting quantum dots cannot appear
so that the corresponding fine features in the current/gate
voltage dependence obtained, e.g., in Refs. 4 and 8, are ab-
sent. The reason of the neglect of the effect of the mixing
between the levels of the quantum dots on the current/gate
voltage dependence is as follows. Since the difference be-
tween the bonding and antibonding levels has an order of �t�
�where �t�	kBT in the weak tunneling limit� and the smallest
width of the current/gate voltage dependence has an order of
kBT, the fine features in the current/gate voltage dependence
arising due to the mixing between the levels of the quantum
dots are not observable in the case under consideration.

In contrast to Ref. 16, the peaks of the tunnel current/gate
voltage dependence considered in the present paper have dif-
ferent physical nature than for the case of the one-level quan-
tum dot. Unlike Ref. 16, the first and second peaks corre-
spond to the transitions L→ �0,0�, �1,0�→ �0,1�, �0,1�
→R and �1,1�→R, �1,0�→ �0,1�, L→ �0,1� �the hole cur-
rent�, respectively. The average positions of thermally fluc-
tuating valence levels E1�n1 ,n2� and E2�n1 ,n2� of the first
and second quantum dots �but not their fixed positions as in
the absence of the electron-phonon coupling�, counted from
the Fermi levels of the left and right leads with due account
of the interdot Coulomb repulsion, are given by the expres-
sions E1�1,0�=−�F1L�0,0�=�1−
, E1�1,1�=−�F1L�0,1�
and E2�0,1�=−�F2R�0,0�=�2+eV−
, E2�1,1�
=−�F2R�1,0�, respectively. At �=�max,1 or �=�max,2 the

FIG. 3. Effect of 
 and V on the tunnel current/gate voltage
dependence for k0 /k=0.01, 
12=2
, �=0, z1 /L=1−z2 /L=0.15,
LD /L=0.01, and U12→�. Solid lines: V=8kBT: 1. 
=5kBT, 2. 

=20kBT. Dashed lines: V=4kBT: 1. 
=5kBT, 2. 
=20kBT. The cur-
rent j is normalized to ek0 exp�−
12 /4kBT�.

FIG. 4. Dependence of the tunnel current on the gate voltage for
k0 /k=1. The current j is normalized to ek0 exp�−
12 /4kBT�. The
parameters are the same as in Fig. 1. 1. U12=15kBT; 2. U12

=10kBT; 3. U12=5kBT; 4. U12→�; and 5. U12=0.
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corresponding energy levels E1�1,0�−kBT ln�2�, E2�0,1�
−kBT ln�2� or E1�1,1�−kBT ln�2�, E2�1,1�−kBT ln�2� for all
� in the case when U12=0 and for �=0 in the case when
U12�U12� lie close to the energy window �the energy gap
between the Fermi levels of the left and right leads� on dif-
ferent sides from its center but at equal distances ��� /2 from
it. In particular case when z1=z2 and �1=�2 the positions of
these levels coincide with the center of the energy window.
As a result, the tunnel current reaches its maximum values
when the corresponding energy levels lie symmetrically with
respect to the center of the energy window.

When ���� �eV�, kBT and U12�U12�, the electron correla-
tion effects manifests itself through the additional depen-
dence of the positions �max,1 and �max,2 of the first and the
second peaks of the current/gate voltage dependence and
their widths on the parameters V, LD, and � as compared with
the case �=0 when �max,1	�max,�	�max, �max,2	�max
+U12. In particular, a value of �max,�	�max,1 depends on the
sign of � for all values of k0 /k. As follows from Eqs.
�A25�–�A27� and �A39�, e
�max,� varies as −� for ��0 and
is independent of � for ��0. The width also depends on �
for small k0 /k or k0�k �see Eqs. �A30� and �A34�� and is
larger for ��0 but, in contrast to the case when U12=0, is
independent of V, 
, zi /L, LD /L, and � for k0 /k�1 �see the
Appendix�. Figure 5 demonstrates the effect of ��� and the
sign of � on the curves of the current/gate voltage depen-
dence. Figure 5 shows that the positions of the maxima of
j��� curves are independent of � for ��0 The difference of
values of e
�max,� for curves presented in Fig. 5�a� is well
described by Eqs. �A26� and �A27�. The widths of the
maxima are larger for ��0 in the small k0 /k limit �Fig. 5�a��
and are independent of � for k0 /k�1 �Fig. 5�b��.

The dependence of �max,2 on � is opposite to that for
�max,1. For large k0 /k, a value of �max,2 is independent of �
for ��0 and varies as ��� for ��0 �Eq. �A42��. Figure 6�a�
shows that, for ��0, the position of the Coulomb blockade
peak almost coincides with that for �=0. However, the posi-
tion of the left peak is shifted to the left by 	�. On the
contrary, for ��0, the position of the left peak almost coin-
cides with that for �=0 but the position of the Coulomb
blockade peak is shifted to the right by 	��� relative to �max,2
for �=0.

In contrast to the case when U12=0 or U12�U12�, �=0,
the positions of the energy levels E1�1,0�−kBT ln�2�,
E2�0,1�−kBT ln�2� and E1�1,1�−kBT ln�2�, E2�1,1�
−kBT ln�2� are asymmetric with respect to the center of the
energy window for ���� �eV�, kBT, U12�U12�, large k0 /k and
�=�max,1, �max,2. At �=�max,1, the lower energy level lies at
one of the Fermi levels of the leads �e.g., E1�1,0�
−kBT ln�2� lies at the Fermi level of the left lead for ��0
and E2�0,1�−kBT ln�2� lies at the Fermi level of the right
lead for ��0� whereas the higher energy level is shifted
upward by ���. On the contrary, at �=�max,2, the higher en-
ergy level lies at one of the Fermi levels of the leads �e.g.,
E1�1,0�−kBT ln�2� lies at the Fermi level of the left lead for
��0 and E2�0,1�−kBT ln�2� lies at the Fermi level of the
right lead for ��0� whereas the lower energy level is shifted
downward by ���.

It can be shown that the heights j��max,1� and j��max,2� of
the peaks are independent of the sign of � for �eV�	kBT and

decrease with the increase in ���. When ��� and �eV� have the
same order, the strong dependence of the heights of the peaks
on the sign of � appears for ���	 �4
12kBT�1/2. As follows
from Eq. �A23�, j��max,1� depends on eV−� for k0 /k	1
and, therefore, is larger for ��0 at given ��� and V�0 �see
curves 1 in Fig. 5�a��. Then �����4
12kBT�1/2, the first ex-
ponential factor on the rhs of Eq. �A23� plays an important
role so that for ���=7kBT the heights of the peaks are almost
independent of the sign of � �see curves 2 in Fig. 5�a��.

On the contrary, for k0 /k�1, values of j��max,1� and
j��max,2� depend mainly on ��� �see Eq. �A38�� and are larger
for ��0 because ��2−�1�eV�0 for V�0 that leads to the
smaller values of ��� �see Figs. 5�b� and 6�a��. However, for
intermediate values of k0 /k�1, all the peaks of the tunnel
current shown in Fig. 6�b� have approximately the same
heights which are almost independent of the sign of � for
LD /L=0.3. It should be noted that the heights of the peaks of
j��� depend also on LD /L at given � due to the strong de-
pendence of � on �2−�1. Figure 6�c� shows the effect of
Debye screening on the heights of the peaks of j���. The
increase in the screening �LD /L=0.1, �2−�1 is small� leads
to the significant dependence of the heights of the peaks on
the sign of � since ��� for ��0 becomes larger whereas �

(b)

(a)

FIG. 5. Effect of � on the tunnel current/gate voltage depen-
dence for V=4kBT, 
=5kBT, 
12=2
, z1 /L=1−z2 /L=0.15, LD /L
=0.3, and U12→�. 1. ���=5kBT; 2. ���=7kBT. Solid lines: ��0.
Dashed lines: ��0. �a� k0 /k=0.01, �b� k0 /k=100. The current j is
normalized to ek0 exp�−
12 /4kBT�.
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for ��0 becomes smaller as compared with the case when
LD /L=0.3. Figures 6�b� and 6�c� also show that, as for small
values of k0 /k, the widths of the peaks of j��� curves for
k0 /k=1 still depend on the sign of � and are larger for nega-
tive �.

IV. DIFFERENTIAL CONDUCTANCE

Since k12�1,0� and k21�0,1� depend exponentially on
�
12−��2 / �4
12kBT�1/2, one can suggest that, for small val-
ues of k0 /k or for k0�k, the tunnel current as a function of a
bias voltage is large when

eV�� = ��
12 − ��/��2 − �1� , �16�

where the difference �2−�1=sh��z2−z1� /2LD� /sh�L /2LD� is
smaller than 1 for z2−z1�L and increases monotonously
from 	0 for LD /L	1 to �z2−z1� /L for LD /L�1 �e.g., �2
−�1=0.57 for z1 /L=0.15 and LD /L=0.3�. In all cases
�eV����
12 / ��2−�1��
 for V�+�0, ��0 or V�−�0, �
�0. It can be shown that, for �eV��
, �e
��, ���, and all
values of U12 and k0 /k, the probabilities P�1,0� and P�0,1�
tend to 1 for V�0 and V�0, respectively �see, e.g., Eqs.
�9�–�11� obtained for the case when k0 /k	1�. This fact is
obvious since, for, e.g., V�0 and the parameters under con-
sideration, the energy level �1 lies deeply under the Fermi
level of the left lead whereas the energy level �2 lies much
higher with respect to the Fermi level of the right lead.
Therefore, as follows from Eq. �8�, the tunnel current in the
neighborhoods of the points V�� equals approximately
ek12�1,0� or −ek21�0,1�.

In fact, values of �eV��� are not very large so that P�1,0�
or P�0,1� is smaller than 1. However, these probabilities
vary slowly with V in the neighborhoods of the points V�� as
compared with the exponential factors. Therefore, the posi-
tions of the maxima of the current/bias voltage dependence
indeed coincide approximately with the points V��. When
�V�� �V��� and LD /L�0, the tunnel current decreases and
tends to zero that leads to the existence of two regions of the
negative differential conductance.

The physical meaning of this result is as follows. When
V�0, a value of the tunnel current is governed by the elec-
tron transitions from the first quantum dot to the second one.
The energy of the occupied electron level of the first quan-
tum dot and the energy of the empty one of the second dot
equal −2
+�1 and �2, respectively. The condition of the co-
incidence of these levels is V=V�+. Analogously, at V�0,
the condition of the coincidence of the empty energy level of
the first quantum dot and the occupied energy level of the
second one is V=V�−. When �V�� �V���, the energy gap be-
tween levels increases that leads to the decrease in the tunnel
current. Therefore, as in Refs. 11 and 12, the regions of the
negative differential conductance appear due to the increas-
ing noncoincidence of the energy levels of quantum dots.
However, in contrast to Refs. 11 and 12, in the totally weak
tunneling limit with account of the strong electron-phonon
interaction and the Debye screening effect, the condition of
the coincidence of the energy levels is determined by the
energy of the polaron shift and a value of the Debye screen-
ing length. As a result, the widths of the peaks of the differ-
ential conductance/bias voltage curves depend not on the
widths �L and �R of the electron levels of the quantum dots
but are proportional to �
kBT�1/2 / ��2−�1�.

Using Eq. �8� for the tunnel current and assuming a slow
variation in the probabilities P�1,0� and P�0,1� with V in
the neighborhood of the points V��, it can be shown that the

(b)

(a)

(c)

FIG. 6. Effect of �, k0 /k, and LD /L on the heights, widths, and
positions of peaks of the tunnel current/gate voltage dependence for
V=4kBT, 
=5kBT, 
12=2
, z1 /L=1−z2 /L=0.15, and U12=15kBT.
Solid lines: �=5kBT. Dashed lines: �=−5kBT. �a� k0 /k=100,
LD /L=0.3. Dotted line: �=0. �b� k0 /k=1, LD /L=0.3. �c� k0 /k
=100, LD /L=0.1. The current j is normalized to ek0 exp�−
12 /
4kBT�.
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differential conductance Z�V ,� ,��=dj /d�eV� takes its maxi-
mum and minimum values at the points

Vmax,+ 	 V�+ − 2�
kBT�1/2/��2 − �1� ,

Vmax,− 	 V�− + 2�
kBT�1/2/��2 − �1� �17�

and

Vmin,+ 	 V�+ + 2�
kBT�1/2/��2 − �1� ,

Vmin,− 	 V�− − 2�
kBT�1/2/��2 − �1� , �18�

respectively. It can also be shown that Z�Vmax,��
=−Z�Vmin,��	k0��2−�1�e−1/2 / �2�
kBT�1/2�. The width at
half maximum of the peaks of the Z�V� curve equals approxi-
mately 2�
kBT�1/2 / ��2−�1�. It is also obvious that the zeros
of Z�V� equal approximately V��.

Figures 7–9 demonstrate the effect of U12, �, and � on the
differential conductance/bias voltage dependence for k0 /k
=0.01. Figures 7 and 8 show that, in accordance with Eqs.
�17� and �18�, the positions of the points of maxima and
minima of Z�V� curves are independent of U12 and �. On the
other hand, Fig. 9 shows that these positions depend on �
and, in the region V�0 for ��0 and in the region V�0 for
��0, are well described by Eqs. �17� and �18�. It follows
from the identity j�V ,� ,��=−j�−V ,−� ,−�� for the tunnel
current which is valid for U12=0 for small values of k0 /k and
arbitrary 
 or for arbitrary k0 /k in the large 
 limit that,
under the same conditions, Z�V ,� ,��=Z�−V ,−� ,−��. As
can be seen from Figs. 7–9 this identity indeed satisfies for
U12=0. In particular, Z�V� is an even function of V for U12
=�=�=0.

However, for U12�0, this identity as well as the identity
j�V ,� ,��=−j�−V ,−� ,−�� for the tunnel current are not
valid. This manifestation of the electron correlation effects
follows formally from Eqs. �9�–�11�. These equations show
that, for U12=0, a value of P�1,0� at given V, �, and �

equals P�0,1� at −V, −�, and −�, respectively. These equa-
tions also show that, for rather large positive values of V, the
probabilities P�1,0� are approximately the same both for
U12=0 and U12�0 so that the probabilities P�1,0� at V
=V�+ are almost the same both for U12=0 and for U12→�
�see Fig. 7�. However, although P�1,0� at V=V�+ equals
P�0,1� at V=V�− for U12=0 and �=�=0, it is not the case
for U12�0. In contrast, we have that P�0,1� at V=V�− is
larger than P�1,0� at V=V�+ for U12�0 �see Fig. 7�. This
difference between P�1,0� and P�0,1� depends on LD /L and
decreases for large values of LD /L �see Fig. 10�a��. The
physical meaning of such behavior of P�1,0� and P�0,1� is
as follows. For U12=0, the equality between P�1,0� at V
=V�+ and P�0,1� at V=V�− for �=�=0 is ruled by the sym-
metry between the electron and hole currents. When U12
�0, the asymmetry in the positions of the electron energy
levels of the quantum dots at different signs of the bias volt-
age should be taken into account. When V�0 and �=�=0,
the level E1�1,0�−kBT ln�2� is situated at −�1eV below the
Fermi level of the left lead. In contrast, for V�0 and �=�
=0, the level E2�0,1�−kBT ln�2� lies at e�1−�2��V� below
the Fermi level of the right lead. Since 1−�2��1, the sym-

FIG. 7. Effect of U12 on the dependence of the differential con-
ductance on the bias voltage for �=�=0, 
=5kBT, 
12=2
, z1 /L
=1−z2 /L=0.15, LD /L=0.3, and k0 /k=0.01. Solid lines: 1. U12=0;
2. U12→�. The dashed line: U12=1kBT. Differential conductance is
normalized to ek0 exp�−
12 /4kBT� /kBT.

(b)

(a)

FIG. 8. Effect of � on the dependence of the differential con-
ductance on the bias voltage for �=0, 
=5kBT, 
12=2
, z1 /L=1
−z2 /L=0.15, LD /L=0.3, k0 /k=0.01. �a� U12=0; �b� U12→�. Solid
line: �=5kBT, dashed line: �=−5kBT, and dotted line: �=0. Dif-
ferential conductance is normalized to ek0 exp�−
12 /4kBT� /kBT.
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metry between the positions of the levels in the cases when
V�0 and V�0 is broken so that P�0,1� at V�0 is large
than P�1,0� at V�0. This symmetry takes place only when
the ratio LD /L is large, since then 1−�2=�1=z1 /L.

As for the differential conductance at the zero bias volt-
age, Z�0�, it is shown in the Appendix �see Eq. �A14�� that
for U12=0, Z�0� is independent of LD /L at �=0, depends
only on the absolute value of � in this case and decreases
when it increases �see Fig. 9�a��. Analogously, Z�0� depends
on the absolute value of � at �=0 and decreases when it
increases �see Fig. 8�a��. In contrast, as can be readily shown
from Eq. �15�, the differential conductance Z�0� for U12
→� depends on the signs of � and � and is larger for �
�0 and ��0 �see Fig. 8�b��. It can also be shown that, for
arbitrary LD /L and �=�=0, Z�0� for U12→� equals 4/3 of
Z�0� for U12=0 at small k0 /k �see Figs. 7 and 10�b�� and
Z�0� for U12→� equals 2/3 of Z�0� for U12=0 at large k0 /k
�see Fig. 11�b��.

We have already discussed above the effect of the small
Debye screening �large values of LD /L� on the relation be-
tween P�1,0� at V=V�+ and P�0,1� at V=V�−. In the oppo-
site case of small values of LD /L the strong Debye screening

(b)

(a)

(c)

FIG. 10. Effect of Debye screening on the dependence of the
differential conductance on the bias voltage for �=�=0, 
=5kBT,

12=2
, z1 /L=1−z2 /L=0.15, and k0 /k=0.01. �a� LD /L=3, solid
line: U12→�; dashed line: U12=0; �b� LD /L=0.03, solid line:
U12→�; dashed line: U12=0; and �c� U12=0, solid line: LD /L
=0.1, dashed line: LD /L=0.5, and dotted line: LD /L=0.3. Differen-
tial conductance is normalized to ek0 exp�−
12 /4kBT� /kBT.

(b)

(a)

FIG. 9. Effect of � on the dependence of the differential con-
ductance on the bias voltage for �=0, 
=5kBT, 
12=2
, z1 /L=1
−z2 /L=0.15, LD /L=0.3, and k0 /k=0.01. �a� U12=0; �b� U12→�.
Solid line: �=−5kBT, dashed line: �=5kBT, dotted line: �=0. Dif-
ferential conductance is normalized to ek0 exp�−
12 /4kBT� /kBT.
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affects also the form of the Z�V� curves. When LD /L tends to
zero, �2, �1, and the difference �2−�1 tend to zero too so that
the points of the maxima �V��� as well as their widths tend to
infinity. In this case, at �=0, the positions of the electron
energy levels of quantum dots are independent of V and co-
incide so that E1�1,0�−E2�0,1�=0. As a result, the absolute
values of the tunnel current are independent of V for �V�
�2kBT �see, e.g., Eq. �12��. Within the interval −2kBT�V
�2kBT the tunnel current increases rapidly from negative to
positive values which results in the sharp U12-dependent
peaks in the Z�V� curves �Fig. 10�b��. Figure 10�c� shows
that, with the increase in LD /L, the transition from the Z�V�
curves having two maxima to Z�V� curves having only single
maximum at V=0 is continuous and includes the curves hav-
ing three maxima. It can be shown that a maximum at V=0
appears when 6�2−3�2

2−3�1−2�0 or when LD /L�0.174.
We consider so far only the case of small values of k0 /k.

A value of k0 /k also strongly affects a form of a Z�V� curve.
The normalized differential conductance which is propor-
tional to Z /k0 behaves approximately as P�1,0� /k0 or
P�0,1� /k0 at the points of maxima of Z and, therefore, de-

creases with the increase in k0 /k. A value of Z /k0 at V=0
decreases more slowly with the increase in k0 /k �see Eq.
�A14��. As a result, with the increase in k0 /k, values of Z /k0
at V	0 and Vmax,� approaches each other �see Fig. 11�a��
and, finally, for rather large values of k0 /k, merge into a
single maximum at V=0 �see Fig. 11�b��.

Concluding this section, we address briefly the problem of
rectification of the tunnel current by the two quantum dot
system discussed first in Ref. 22. The simplest way to treat
this problem can be based on Eq. �16�. As follows from Eq.
�16�, a value of V�− equal zero at �=−2
. Since the tunnel
current and, hence, Z are proportional to exp�−�2 /
8
kBT�exp�−��� /2kBT� at V=�=0 �see Eq. �12��, the tunnel
current in the region V�0 is almost zero for �=−2
. Figure
12 illustrates this conclusion and shows that Z�V�	0 for V
�0 in the case when �=−2
. For �=−
 a complete rectifi-
cation is absent. It should be noted that, in contrast to Ref. 22
where a molecular rectifier in vacuum was considered, the
use of the double quantum dot system in combination with
the electrolyte solution permits to tune a rectification by
variations in the gate voltage, the interdot Coulomb repulsion
energy, the energy of the polaron shift, and the intensity of
the Debye screening. A detail analysis of the problem of the
rectification by the double quantum dot system from this
point of view will be given elsewhere.

V. CONCLUSION

In this paper the effect of the interdot Coulomb repulsion
on the tunnel current/gate voltage dependence for the double
quantum dot system in the serial configuration in the totally
weak tunneling limit with due account of the strong electron-
phonon interaction and Debye screening effect is studied. It
is shown that in the small k0 /k limit and at rather large val-
ues of the interdot Coulomb repulsion the tunnel current/gate
voltage curve has a large width at half maximum which has
the order of −kBT ln�k0 /k�. The double quantum dot system
in this regime can be used as an amplifier where the ampli-

(b)

(a)

FIG. 11. Effect of k0 /k on the dependence of the differential
conductance on the bias voltage for �=�=0, 
=5kBT, 
12=2
,
z1 /L=1−z2 /L=0.15, and LD /L=0.3. Solid line: U12→�; dashed
line: U12=0. �a� k0 /k=1; �b� k0 /k=10. Differential conductance is
normalized to ek0 exp�−
12 /4kBT� /kBT.

FIG. 12. Rectification of the tunnel current in the case when �
=−2
, �=0, 
=5kBT, 
12=2
, z1 /L=1−z2 /L=0.15, LD /L=0.3,
and k0 /k=0.01. Solid line: �=−10kBT; dashed line: �=−5kBT. Dif-
ferential conductance is normalized to ek0 exp�−
12 /4kBT�kBT.
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fication takes place in the wide range of values of the gate
voltage. A consequence of the strong Coulomb blockade in
the small k0 /k and large U12 limits is also the dependence of
the position of the maximum of the current/gate voltage
curve and its width on the energy 
 of the polaron shift.
Since the critical values U12� of U12 have the order of the
width W�	−kBT ln�k0 /k�� at small ratio k0 /k, the Coulomb
blockade peaks appear at rather large values of the gate volt-
age � in this case. At k0 /k�1 the effect of the interdot
Coulomb repulsion manifests itself in the narrow-width Cou-
lomb blockade peaks in the tunnel current/gate voltage
curves. The shape of these curves is similar to that obtained
for the one-level quantum dot16 but the peaks have different
physical interpretation. Another interesting feature of the
electron correlation effects arising due to the interdot Cou-
lomb repulsion is the dependence of the positions of the
maxima of the current/gate voltage dependence and their
widths on the sign of the difference of the electron energy
levels of the quantum dots.

The effect of the interdot Coulomb repulsion on the dif-
ferential conductance/bias voltage dependence is also stud-
ied. This effect consists mainly in the violation of the identity
Z�V ,� ,��=Z�−V ,−� ,−�� which takes place at U12=0 and in
the strong dependence of the maximum and minimum values
of the differential conductance in the region V�0 on U12. In
addition to that, the form of the Z�V� curve depends on the
gate voltage, the difference of the electron energy levels of
the quantum dots, the Debye screening length, and a value of
k0 /k. As a result, the form of the Z�V� curve can be very
different in different regions of the parameter space so that it
is possible to make a conclusion about the physical param-
eters of the system basing on the characteristic forms of these
curves. The existence of the regions of the negative differen-
tial conductance is demonstrated and the dependence of their
positions on the parameters of the system is studied. The
problem of rectification of the tunnel current by the two
quantum dot system is briefly addressed.
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APPENDIX

Here we present the expressions for the steady-state prob-
abilities P�n1 ,n2� and study the dependence of P�n1 ,n2� and
the tunnel current on the parameters of the system for differ-
ent limiting cases for two opposite values of U12: U12=0 and
U12→�. The steady-state solutions of Eqs. �1�–�3� have the
form

P�0,0� =
k1L�1,0�P�1,0� + k2R�0,1�P�0,1�

kL1�0,0� + kR2�0,0�
,

P�1,1� =
kL1�0,1�P�0,1� + kR2�1,0�P�1,0�

k1L�1,1� + k2R�1,1�
, �A1�

P�1,0� =
2D01

D01G10 + D10G01
, P�1,0� =

2D10

D01G10 + D10G01
,

�A2�

where

D10 = k12�1,0� +
kR2�0,0�k1L�1,0�

kL1�0,0� + kR2�0,0�
+

2k1L�1,1�kR2�1,0�
k1L�1,1� + k2R�1,1�

,

�A3�

D01 = k21�0,1� +
kL1�0,0�k2R�0,1�

kL1�0,0� + kR2�0,0�
+

2k2R�1,1�kL1�0,1�
k1L�1,1� + k2R�1,1�

,

�A4�

G10 = 2 +
k1L�1,0�

kL1�0,0� + kR2�0,0�
+

4kR2�1,0�
k1L�1,1� + k2R�1,1�

, �A5�

G01 = 2 +
k2R�0,1�

kL1�0,0� + kR2�0,0�
+

4kL1�0,1�
k1L�1,1� + k2R�1,1�

. �A6�

1. The case when U12=0

In this case kL1�0,1�=kL1�0,0�, k1L�1,1�=k1L�1,0�,
kR2�1,0�=kR2�0,0�, and k2R�1,1�=k2R�0,1�. We start from
the limit k0 /k→0. Using Eqs. �A1�–�A6� one obtains that

P�0,0� =
k1L�1,0�k2R�0,1�

Z
, P�1,1� =

4kL1�0,0�kR2�0,0�
Z

,

�A7�

P�1,0� =
2kL1�0,0�k2R�0,1�

Z
, P�0,1� =

2kR2�0,0�k1L�1,0�
Z

,

�A8�

where

Z = k1L�1,0�k2R�0,1� + 2�kL1�0,0�k2R�0,1�

+ kR2�0,0�k1L�1,0�� + 4kL1�0,0�kR2�0,0� . �A9�

Then it follows from Eqs. �8� and �A8� that the tunnel cur-
rent with the accuracy up to the first order in k0 /k is given by
the expression

j =
2e�kL1�0,0�k12�1,0�k2R�0,1� − kR2�0,0�k21�0,1�k1L�1,0��

Z
.

�A10�

Finally, using the detailed balance principle �Eq. �5��, we
obtain Eqs. �10�, �12�, and �13� which are valid for arbitrary
values of V, �, 
, and �.

For arbitrary values of k0 /k the dependence of the tunnel
current on the parameters of the system can be studied ana-
lytically only in the large 
 limit when, e.g., kL1�0,0�
	0.5�k exp�−
 /4kBT�exp��F1L�0,0� /2kBT�. It can be
shown that in this limit
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j =

21/2ek0 exp�−

12

4kBT
�ch�2e
� − e
V + �

4kBT
�sh� eV

2kBT
�

aF + 23/2ch�2e
� − e
V + �

4kBT
�ch� e
� + e�1V

2kBT
�ch� e
� + e��2 − 1�
V + �

2kBT
� , �A11�

where

a =
2k0 exp�− 
12/4kBT�
�k exp�− 
/4kBT�

�A12�

and

F = ch� eV − �

4kBT
�ch� �

2kBT
�

+ ch� eV + �

4kBT
�ch�2e
� − e
V + �

2kBT
� . �A13�

At a=0 Eq. �A11� yields the large 
 limit of Eq. �12�. The
tunnel current given by Eq. �A11� has the symmetry property
j�V ,� ,��=−j�−V ,−� ,−�� for all values of k0 /k in the large

 limit. It follows from Eq. �A11� that, as in the k0 /k→0
limit, the tunnel current takes its maximum values at �max
=V /2−� /2e
 for all values of k0 /k. However, the width W at
half maximum of the j��� curve depends on the ratio k0 /k.
For example, a value of ch�e
W /4kBT� equals �−a+ �a2

+1281/2a+16�1/2� /81/2 for �eV�, ���	kBT and increases mo-
notonously from 21/2 for a=0 to 2 for a→�. As a result, the
width e
W increases monotonously from 4kBT ln�1+21/2� to
4kBT ln�2+31/2� when k0 /k increases from 0 to infinity.

The expression for the differential conductance Z�V�
=dj /d�eV� can be readily obtained from Eq. �A11�. In par-
ticular, for V=�=0, one obtains that

Z�0� =
1

4kBT

21/2ek0 exp�− 
12/4kBT�
ach�e
�/2kBT� + 21/2ch2�e
�/2kBT�

.

�A14�

The differential conductance given by Eq. �A14� is indepen-
dent of LD for �=0 and decreases with increase in the abso-
lute value of �. The ratio Z /k0 decreases with the increase in
k0.

We also discuss briefly the limit k0 /k→�. From Eq.
�A11� one obtains that

j = 21/2�

2
ek exp�−




4kBT
�

�ch�2e
� − e
V + �

4kBT
�sh� eV

2kBT
�� F �A15�

in this limit. Using Eqs. �A13� and �A15� the expression for
the width W at half maximum of the j��� curve can be ob-
tained. It follows from this expression that e
W
	4kBT ln�2+31/2� in the case when �eV�, ���	kBT or �eV�
� ���, kBT and e
W	2��� in the case when ���� �eV�, kBT.
The last value of e
W is twice larger then that in the limit

k0 /k→0 since the larger values of k0 /k make available large
values of the tunnel current in the larger interval of 
�.

2. The case when U12\�

The last terms on the rhs of Eqs. �A3�–�A6� should be
omitted in this case. Then the expression for the tunnel cur-
rent has the form

j = 2e�kL1�0,0�k12�1,0�k2R�0,1�

− kR2�0,0�k21�0,1�k1L�1,0��/D , �A16�

where

D = 2�k21�0,1� + k12�1,0���kL1�0,0� + kR2�0,0��

+ k21�0,1�k1L�1,0� + k12�1,0�k2R�0,1�

+ 2�kL1�0,0�k2R�0,1� + k1L�1,0�kR2�0,0��

+ k1L�1,0�k2R�0,1� .

As in the case when U12=0, we start from the limit
k0 /k→0. In this limit

P�0,0� =
k1L�1,0�k2R�0,1�

Z�

,

P�1,0� =
2kL1�0,0�k2R�0,1�

Z�

,

P�0,1� =
2k1L�1,0�kR2�0,0�

Z�

, �A17�

where

Z� = k1L�1,0�k2R�0,1�

+ 2�kL1�0,0�k2R�0,1� + k1L�1,0�kR2�0,0�� .

�A18�

Then, using the detailed balance principle �Eq. �5�� and Eqs.
�A16�–�A18�, we obtain Eqs. �11�, �12�, and �15� which are
valid for arbitrary values of V, �, 
, and �. As was discussed
in Sec. III of the paper, the tunnel current given by Eq. �15�
increases monotonously with the increase in � so that the
current is not maximum at the finite value of �=�max. This
maximum appears when the contribution of the term on the
order of k0 /k in the denominator of the expression for the
current is taken into account.

It follows from Eq. �A16� that in the large 
 limit
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j =

2ek0 exp�−

12

4kBT
�sh� eV

2kBT
�

21/2aF� + 2ch� eV − �

2kBT
� + exp�− 2e
� + e
V − �

2kBT
� ,

�A19�

where

F� = 2 exp�2e
� − e
V + �

4kBT
�ch� eV − �

4kBT
�ch� �

2kBT
�

+ exp�− 2e
� + e
V − �

4kBT
�ch� eV + �

4kBT
� �A20�

and a is given by Eq. �A12�. At a=0 Eq. �A19� yields the
large 
 limit of Eq. �15�. However, the tunnel current in the
infinite U12 limit does not have the symmetry property
j�V ,� ,��
=−j�−V ,−� ,−�� which takes place at U12=0 by the reason
discussed in Sec. IV. Using Eqs. �A19� and �A20� it can be
shown that in the small k0 /k limit

e
�max,� 	 �
eV − ��/2 + 
/6 − 2kBT ln�k0/k�/3 − 2kBTf/3
�A21�

with the accuracy up to the terms of the order of ln�k0 /k�,
where

f = ln
ch� eV − �

4kBT
�ch� �

2kBT
�� + ln�4�2

�
� . �A22�

Using Eq. �A16� it can be shown that, for all values of 
 in
the small k0 /k limit,

j��max,�� = ek0 exp�−
�2

4
12kBT
�

�exp�−

12

4kBT
�sh� eV

2kBT
�� ch� eV − �

2kBT
� .

�A23�

In contrast to the case U12=0, the rhs of the expression for
e
�max,� includes three additional terms which take into ac-
count electron correlation effects and depend on the polaron
shift, V, �, and ln�k0 /k�. When �eV�� ���, kBT and ���	kBT,
one obtains that

e
�max,� 	 �1 − �2 − 2�1�eV/3 + 
/6 − 2kBT ln�k0/k�/3.

�A24�

Therefore, in the limit LD /L→0, e
�max varies as eV /3 with
the increase in V but not as eV /2. The most interesting is the
dependence of e
�max,� on � in the case when ���� �eV�, kBT.
It follows from Eqs. �A21� and �A22� that

e
�max,� 	 − �/2 − ���/2 + 
/6 − 2kBT ln�k0/k�/3
�A25�

in this case. Equation �A25� shows that e
�max,� varies as −�
for ��0 and is independent of � for ��0. We also present
the expressions for e
�max,� for two practically important
particular cases in which �eV� and ��� have the same order. In

the first case ��0, V�0, �eV−���kBT, and ����kBT.
Then

e
�max,� 	 �1 − 3�1�eV/3 + 
/6 − 2kBT ln�k0/k�/3.

�A26�

In the second case ��0, V�0, �eV−��	kBT, and ��kBT.
Then

e
�max,� 	 �3 − 5�2 − �1�eV/6 − 5�/6 + 
/6

− 2kBT ln�k0/k�/3. �A27�

It follows from Eqs. �A19� and �A20� that the width W at
half maximum of the j��� curve in the large 
 and small k0 /k
limits calculated with the accuracy up to the terms of the
order of ln�k0 /k� is given by the expression

e
W 	 
/2 − 2kBT ln�k0/k�

+ kBT ln� 2ch3� eV − �

2kBT
�

ch2� �

2kBT
�ch2� eV − �

4kBT
�� + 2kBT ln��/2� .

�A28�

When �eV�� ���, kBT and ���	kBT, we have that

e
W 	 �1 − �2 + �1�eV + 
/2 − 2kBT ln�k0/k� . �A29�

When ���� �eV�, kBT, one obtains that

e
W 	 ���/4 + 
/2 − 2kBT ln�k0/k� . �A30�

Figures presented in Sec. III show that the main parts of
the j��� curves lie in the region, where �e
���
 in the case
when ��0. The points e
�max,� lie also in this region in
the case when ��0. However, when ��0, the points
e
��max,�+W /2� lie in the region, where �e
���
. There-
fore, in order to calculate the width of the j��� curves in the
case when ��0, the expression for the tunnel current in the
large e
� region �e
��
� should be obtained. It can be
shown19 that in the large e
� limit kL1�0,0�=kR2�0,0�
=k��
 /kBT�1/2. The rate constants k1L�1,0� and k2R�0,1� are
very small in this limit. The expressions for these constants
can be obtained using the detailed balance principle �Eq.
�5��. Then the expression for the tunnel current has the same
form as Eq. �A19�

j =

2ek0 exp�−

12

4kBT
�sh� eV

2kBT
�

a�F�� + 2ch� eV − �

2kBT
� + exp�− 2e
� + e
V − �

2kBT
� ,

�A31�

where a and F� should be replaced by a� and F�� . Here a�
=k0 exp�−
12 /4kBT� / �k��
 /kBT�1/2� and

F�� = 2 exp�2e
� − e
V + �

2kBT
�ch� �

2kBT
� + ch� eV

2kBT
� .

�A32�

At a�=0 Eq. �A31� also yields the large 
 limit of Eq. �16�.
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Then it follows from Eqs. �A31� and �A32� that the width
W for ��0 in the large e
� and small k0 /k limits calculated
with the accuracy up to the terms on the order of ln�k0 /k� is
given by the expression

e
W 	 
/2 − kBT ln�k0/k� + kBT ln�2ch2� eV − �

2kBT
�

ch� �

2kBT
� �

+ kBT ln��
/kBT�/2. �A33�

The rhs of Eq. �A33� differs from that of Eq. �A28� by the
factor at ln�k0 /k� and the terms which include logarithmic
functions. As a result, one obtains that, in the limit ���
� �eV�, kBT, and ��0,

e
W 	 ���/2 + 
/2 − kBT ln�k0/k� . �A34�

It follows from Eqs. �A30� obtained for ��0 and Eq. �A34�
obtained for ��0 that the width depends on the sign of �.

Finally we address the limit k0 /k→�. When U12 is finite
but large enough, the overlap between the first and the sec-
ond peaks of the j��� curve is almost absent in this limit.
Then it follows from Eqs. �A12� and �A19� that in the large

 limit the tunnel current j1 in the neighborhood of the first
peak is given approximately by the expression

j1 = 21/2�

2
ek exp�−




4kBT
�sh� eV

2kBT
�� F� �A35�

and coincides with the total tunnel current in the limit U12
→�. When �=0 and �1=�2=� �the positions of both levels
are the same�, Eq. �A35� coincides formally with the expres-
sion for the tunnel current in the spinless model in the case
of the single-center bridged contact �see Eq. �21� of Ref. 17,
where �el=�tip=k���
 /kBT�1/2 /2� having single nondegen-
erate electron energy level where, however, the parameter
e
� is shifted by −kBT ln�2�

j1 =

�

2
ek exp�−




4kBT
�sh� eV

4kBT
�

ch
 e
� − kBT ln�2� − e�0.5 − ��V
2kBT

� . �A36�

In the model under consideration when the spin degeneracy
is taken into account, Eq. �A35� describes the tunnel current
in the case of the single-center bridged contact having dou-
bly degenerate electron energy level ��1=�2�, which can be
occupied by single electron due to �U1=U2=U12=��. The
shift −kBT ln�2� of 
� is due to the entropy contribution to
the free energies �F.

It can be shown using Eq. �A35� that the tunnel current j1
takes its maximum value at

e
�max,1 = �
eV − ��/2 − kBT ln�2�

+ kBT ln
 ch��eV + ��/4BT�
ch��eV − ��/4kBT�ch��/2kBT��

�A37�

so that

j1��max,1� =

�

2
ek exp�−




4kBT
�sh� eV

2kBT
�

2
ch� eV − �

4kBT
�ch� �

2kBT
�ch� eV + �

4kBT
��1/2 .

�A38�

As e
�max,� in the limit k0 /k→0, e
�max,1 varies as −� for
��0 and is independent of � for ��0 in the case when
���� �eV�, kBT

e
�max,1 	 c1eV − �/2 − ���/2, �A39�

where c1=1−�2 for ��0 and c1=−�1 for ��0. It can also
be shown that e
�max,1 is given by Eq. �13� for �eV�� ���, kBT
and is smaller than the rhs of Eq. �13� by kBT ln�2� in the
case when �eV�, ���	kBT.

It follows from Eqs. �A35� and �A37� that, in contrast to
all cases considered above, the width e
W in the limit k0 /k
→� equals 4kBT ln�2+31/2� and, therefore, is independent of
V, 
, LD, and �.

The approximate expression j2 for the tunnel current near
the second peak of the j��� curve can be obtained if one
neglects the second terms on the rhs of Eqs. �A3�–�A6�. Then
this expression has a form of Eq. �A35� where the denomi-
nator F�2 is slightly different from F�. Namely, the energy
e
� is replaced by e
��=e
�−U12 and the exponential fac-
tors on the rhs of Eq. �A20� are interchanged

F�2 = 2 exp�− 2e
�� + e
V − �

4kBT
�ch� eV − �

4kBT
�ch� �

2kBT
�

+ exp�2e
�� − e
V + �

4kBT
�ch� eV + �

4kBT
� . �A40�

As a result, the expression for the position �max,2 of the Cou-
lomb blockade peak has a form of Eq. �A37� where, how-
ever, U12 is added to the rhs and the last term enters the rhs
with an opposite sign

e
�max,2 = U12 + �
eV − ��/2 + kBT ln�2�

− kBT ln
 ch��eV + ��/4BT�
ch��eV − ��/4BT�ch��/2kBT�� .

�A41�

The height j��max,2� of the Coulomb blockade peak and its
width coincide with those for the first peak. It can be shown
that e
�max,2=U12+e
�max for �eV�� ���, kBT, where �max is
given by Eq. �13�. However, in contrast to the behavior of
the position of the maximum of the first peak �Eq. �A39��,

�max,2 is independent of � for ��0 and varies as ��� for �
�0 in the case when ���� �eV�, kBT

e
�max,2 	 c2eV − �/2 + ���/2, �A42�

where c2=−�1 for ��0 and c2=1−�2 for ��0.
It is worth noting that if we consider the sum j��max,1�

+ j��max,2� and formally take the limit U12→0, we would
obtain a function of � which has a maximum at the point
�max given by Eq. �13�. The sum �max,1+�max,2 equals 2�max
in this case.
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